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ABSTRACT

INTERPLAY OF ANISOTROPY OF MOMENTUM DISTRIBUTIONS AND MEAN
FIELDS IN HEAVY-ION COLLISIONS

By

Christian Helmut Simon

We construct an explicitly anisotropic nucleonic mean field, for a phase-space density aniso-

tropic in momentum, convenient for modeling of nuclear reactions, using separable inter-

actions in momentum space. We demonstrate the flexibility of our separable model for

the potential energy density V associated with the momentum-dependent mean field U ,

by approximating the respective expressions by Welke et al. which also serve as reference.

Therefore, we apply an expansion in spherical harmonics, comprising scalar and tensorial

terms to Welke’s potential energy density, laying open the anisotropy of the mean field.

Ground-state properties in the reference model can be well described within our framework.

The anisotropy in our model is parameterized by relying on anisotropic Gaussian distribu-

tions for excited-matter scenarios. We show that the strongly anisotropic mean field of 2

Fermi spheres in momentum space can be reproduced within our framework. As for the

contribution to the velocity field deduced from our mean field parameterization, we find

that for large anisotropies particle velocities tend to be weakly directed along the transverse

momentum axis. Our parameterization can be applied in BUU transport simulations with

gain over an approach of the type of Welke et al. in reduced computational cost and reduced

error-proneness.



For the benefit of mankind.
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Chapter 1

Introduction

In heavy-ion collision theory, the impact of the momentum dependence of the nucleon optical

potential U on the deduced nuclear equation of state is of utmost importance. Not only does

it play a significant role in generating collective flow according to calculations [Pan93], but

it is also crucial for particle production like pions and kaons in transport simulations [Tei97].

In order to properly constrain the nuclear compression modulus K, defined as

K = p2F
d2(E/A)

dp2F
, (1.1)

where pF is the Fermi momentum and E/A the binding energy per nucleon, one also

needs to take the momentum dependence of nucleon-nucleon interactions into account. In

1976, Blaizot et al. [Bla76] showed that K could be inferred by measuring the energy

of the isoscalar monopole resonance in medium and heavy nuclei, and found a value of

K = 210± 30MeV. Flow data, however, for a long time seemed to be describable by both a

momentum-dependent “soft” eos (K ≈ 210MeV) or a momentum-independent “hard” eos

(K ≈ 380MeV) [Aic87], [Gal87]. These findings can only be brought into accordance if one

assumes nuclear matter to be “soft” and nuclear interactions to be dependent on p. In fact,

Pan and Danielewicz [Pan93] confirmed this conclusion by obtaining the best agreement

between sideward flow data and the results from transport calculations when applying a

momentum-dependent “soft” eos.

Several approaches to the momentum dependence of the optical potential can be found in the
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literature (see [Zha94] for a review article). The most prominent ones used in BUU [Ueh33]

calculations are the early parameterization by Gogny [Gog75], the ansatz by Gale, Bertsch

and Das Gupta [Gal87] and the one by Welke et al. [Wel88]. In chapter 2, the latter ones

are introduced in more detail, and Welke results will serve as reference for our calculations.

Following Landau theory [Noz99], these approaches comprise a functional expression for the

potential energy density V and its functional derivative with respect to the single-particle

phase-space density f(r,p),

U =
δV

δf

∣

∣

∣

∣

p

, (1.2)

namely the nucleonic mean field (or optical potential) U .

If the density f is anisotropic in momentum space, one would expect by symmetry the mean

field to also exhibit an anisotropic behavior explicitly. Parameterizing f by some anisotropy

parameter ε can be useful in discussing partially equilibrated scenarios in momentum space,

developing after the original nucleons from the Fermi spheres depicting target and projectile

had a chance to collide with the nucleons from the counterpart nucleus. Thus, the idea of

making the mean field U itself anisotropic for an anisotropic scenario has great appeal to us,

especially since some of the models employed in practice lack this feature.

This thesis is devoted to deriving a parameterization for the energy density V and the

optical potential U in heavy-ion collisions for anisotropic systems that can be efficiently

used in BUU calculations, particularly in the code by Danielewicz [Dan00]. It involves

introducing separable interactions in p-space in terms of an expansion in spherical harmonics

through which anisotropy explicitly enters the mean field. Since Welke’s approach requires

the determination of a 3-dimensional integral for every relevant phase-space location at every

time step (see chapter 2), it is – in general – computationally very costly [Tei97]. In chapter 2,
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we present the models by Gale, Bertsch, Das Gupta (GBD) and by Welke before developing

our own ansatz for V and U . Chapter 3 consists of the detailed derivation of an anisotropic

mean field, cross-checking our results against Welke’s parameterization for the nuclear ground

state and excited matter. The benefits of our new model for BUU calculations in terms of

increased computational efficiency and reduced error-proneness, which are disadvantages

of Welke’s model, are outlined in chapter 4. Chapter 5 is used to summarize and draw

conclusions.

3



Chapter 2

Theory

2.1 Momentum dependence of mean fields and implicit

anisotropy

The parameterizations by GBD and by Welke are presented in this section. We first discuss

the mathematical framework used for the potential energy density V and the mean field U .

In an appended subsection, we exemplify the differences between these models by considering

an anisotropic mean field scenario.

At first appearance, the above two parameterizations look quite similar. Their special dis-

tinguishing mark is the local momentum average 〈p〉 implemented in GBD (2.1) in contrast

to Welke’s convolution with the phase-space density f (2.3). Both models are based on

Skyrme-type interactions [Sky59] for the density-dependent part of the energy density and

the mean field. In the case of GBD, the potential energy density can be written as

VGBD(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+
Cρ(r)

ρ0

∫

d3p′
f(r,p′)

1 +
[

p′−〈p〉
Λ

]2
. (2.1)
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Accordingly, one obtains the mean field

UGBD(ρ(r),p) = A

(

ρ(r)

ρ0

)

+ B

(

ρ(r)

ρ0

)σ

+
C

ρ0

∫

d3p′
f(r,p′)

1 +
[

p′−〈p〉
Λ

]2

+
C

ρ0

ρ(r)

1 +
[

p−〈p〉
Λ

]2
. (2.2)

Note that f – where not otherwise stated – represents the phase-space density of the single

particle which is normalized according to ρ(r) =
∫

d3p′f(r,p′).

Following Welke, the energy density is parameterized as

VWelke(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+
C

ρ0

∫ ∫

d3p d3p′
f(r,p)f(r,p′)

1 +
[

p−p′
Λ

]2
. (2.3)

This leads to a mean field of the form

UWelke(ρ(r),p) = A

(

ρ(r)

ρ0

)

+B

(

ρ(r)

ρ0

)σ

+ 2
C

ρ0

∫

d3p′
f(r,p′)

1 +
[

p−p′
Λ

]2
. (2.4)

An inherent part of both models are the 5 parameters A, B, σ, C and Λ. They are determined

by requiring a binding energy per nucleon of E/A = −16MeV at saturation density ρ0 =

0.16 fm−3, K ≃ 215MeV, U(ρ0, p = 0) ≃ −75MeV and U(ρ0, p
2/2m ≃ 300MeV) = 0.

In the following, we present an anisotropic scenario in momentum space in order to visually

compare GBD with Welke.
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2.1.1 Mean field comparison between Gale et al. and Welke et al.

models

Of relevance to our considerations in chapter 3 is the following particular scenario for which

UGBD is compared with UWelke. In [Wel88], Welke et al. examined (2.2) and (2.4) in the

local rest frame of two cold Fermi spheres

f(p) =
g

(2π~)3
θ(pF − |p∓ p0/2|), (2.5)

separated by p0 = 800MeV in momentum space. The scenario is sketched in fig. 2.1.

−1000

−500

0

500

1000

−1000 −500 0 500 1000

p ⊥
[M

eV
]

p‖ [MeV]

ϑ ~p

p0

2 Fermi spheres

Figure 2.1: Situation within the local rest frame of 2 Fermi spheres separated by p0 =
800MeV in p-space.

The single-particle potentials (cf. fig. 2.2) associated with this scenario are plotted as func-

tions of the polar angle ϑ (defined in fig. 2.1) for different momenta. For fig. 2.2, we use a

6



−40

−20

0

20

40

60

0 π/4 π/2 3/4π π

U
(ϑ
)
[M

eV
]

ϑ [rad]

pF

pF /2

p = 0

pF

pF /2

p = 0

U GBD

U Welke

Figure 2.2: Single particle potential as function of ϑ (cf. fig. 2.1) for different momentum
magnitudes p. Dashed lines refer to GBD and solid lines to Welke et al..

vector p relative to the center of one sphere, with the angle about that center. The mean

fields vary not only in overall offset but also in dependence on angle.

As to the 5 parameters A, B, σ, C and Λ, one uses A = −144.9MeV, B = 203.3MeV,

σ = 7/6, C = −75MeV and Λ = 1.5 p
(0)
F in the GBD model [Gal87]. For Welke’s pa-

rameterization, the parameter values of A = −110.44MeV, B = 140.9MeV, σ = 1.24,

C = −64.95MeV and Λ = 1.58 p
(0)
F are employed [Wel88]. The parameters are chosen to

meet the requirements mentioned in § 2.1. The Fermi momentum p
(0)
F ≈ 263MeV of cold

nuclear matter, with a degeneracy g = 4 (protons and neutrons are not treated separately),

is referred to in both cases.

When dealing with Fermi spheres in GBD or Welke one can find analytical solutions to the

integrals with a Yukawa-type interaction kernel appearing in (2.1) - (2.4). Thus, one can

circumvent running computationally costly integration routines, although it does not help in
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carrying out collision simulations, since distributions quickly depart from the Fermi spheres.

Whenever we deal with ground-state properties in this thesis we make use of one of the

following expressions taken from [Wel88], and also confirmed by the present author:

∫ pF

0

∫ pF

0
d3p d3p′

1

1 +
[

p−p′
Λ

]2
=

32π2

3
p4FΛ

2

[

3

8
− Λ

2pF
arctan

2pF
Λ

− Λ2

16p2F

+

(

3

16

Λ2

p2F
+

1

64

Λ4

p4F

)

ln

(

1 +
4p2F
Λ2

)]

, (2.6)

∫ pF

0
d3p′

1

1 +
[

p−p′
Λ

]2
= πΛ3

[

p2F + Λ2 − p2

2pΛ
ln

(p+ pF)
2 + Λ2

(p− pF)
2 + Λ2

+
2pF
Λ

− 2

(

arctan
p+ pF

Λ
− arctan

p− pF
Λ

)

]

. (2.7)

In chapter 3, we compare our results for an explicitly anisotropic mean field to result of

Welke et al., when combining 2 Fermi spheres.

8



2.2 Separable interactions and anisotropic mean fields

This section is devoted to outlining our model for the momentum dependence of the potential

energy density V and the optical potential U . We show how to parameterize a separable

approach for interactions in p-space and how to make the mean field explicitly anisotropic

for anisotropic f .

Guidance for our model is provided by the manipulation applied to the momentum-dependent

term by Welke et al.. However, as will become clear in chapters 3 and 4, our approach

stands on its own feet; Welke results are used during the modeling process as a point of

orientation, not as an auxiliary engine from which our model cannot be decoupled. We do

not modify the form of the ρ(r)-dependent part and in fact, even assume the same values

for the Skyrme parameters. In order to circumvent the convolution, which is inherent in

the folding approach, we introduce separable interactions (2.8). This separation consists in

representing the potential energy as a sum of products of single-particle terms, but both

scalar and tensorial in nature:

Vsepint(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+
C

ρ0

[

∫

d3p′
f(r,p′)

1 +
[

p′
bΛ

]2

∫

d3p′
f(r,p′)

1 +
[

p′
bΛ

]2

+
∑

α,β

Tαβ(r)Tαβ(r)

]

. (2.8)

Within the center of mass of the system, the first prominent tensorial term, beyond the

scalar, is likely to be quadrupole. To demonstrate the robustness of such a representation

we will attempt to show that the results from the folding model of Welke et al. can be

9



well approximated within our separable model, including the reproduction of anisotropies

of U . For simplicity, we take both the scalar and the tensor term as symmetric in the

single-particle quantities. This is different from the GBD parameterization, scalar in our

terminology. However, we take the form of the single-particle factor to be the same as in

GBD [Gal87]. In the above, Tαβ is a second rank Cartesian tensor [App89],[Dan05]:

Tαβ(r) ≡
∫

d3p′c(p′)f(r,p′)(p′αp′β − 1

3
p′2δαβ). (2.9)

An important feature is its tracelessness,

Txx + T yy + T zz = 0. (2.10)

The function c(p) in (2.9) is at this stage arbitrary and we will restrict its form in chapter

3. Note the dimensionless parameter b in the denominator of the scalar part (2.8).

According to (1.2), the optical potential is found by taking the functional derivative of (2.8)

with respect to f . Due to the directionality involved and approximate axial symmetry of

the phase-space density in heavy-ion collisions, the off-diagonal elements of (2.9) vanish

reducing the summation over α, β to diagonal elements only. Here the tracelessness (2.10) of

the tensor comes into play allowing us to express all elements in terms of T zz. Upon taking

10



a functional derivative of (2.8), we get

Usepint(ρ(r),p) = A

(

ρ(r)

ρ0

)

+ B

(

ρ(r)

ρ0

)σ

+
C

ρ0

[

2

1 +
[ p
bΛ

]2

∫

d3p′
f(r,p′)

1 +
[

p′
bΛ

]2

+ 2c(p)
∑

α,β

(pαpβ − 1

3
p2δαβ)Tαβ(r)

]

. (2.11)

By transforming to spherical coordinates

px =p sin(ϑ) cos(φ)

py =p sin(ϑ) sin(φ)

pz =p cos(ϑ), (2.12)

and recalling the definition of Y20(ϑ),

Y20(ϑ) =

√

5

16π

(

3 cos2(ϑ)− 1
)

, (2.13)

one arrives at the following expression for the tensor contribution to the mean field:

2c(p)
∑

α,β

(pαpβ − 1

3
p2δαβ)Tαβ(r)

= 2c(p)

[

−1

2
(px)2 − 1

2
(py)2 + (pz)2

]

T zz(r)

= c(p)p2
[

3 cos2(ϑ)− 1
]

T zz(r)

=

√

16π

5
c(p)p2Y20(ϑ)T

zz(r). (2.14)
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Therewith, the optical potential (2.11) depends on anisotropy explicitly. The decisive term

(2.14) vanishes for isotropic f since T zz is zero for such cases by construction. Accord-

ingly, we have introduced our framework for dealing with anisotropies in the phase-space

density. For the parameterization of the isotropic part of (2.8) and (2.11), we mimic Welke’s

ground-state properties in chapter 3. The anisotropic part in (2.11) is modelled by using an

anisotropic Gaussian described in the following subsection.

2.2.1 Mean field for an anisotropic Gaussian distribution

In order to arrive at an appropriate c(p) for (2.11), we consider a single-particle phase-space

density in the form of an anisotropic Gaussian. Gaussian momentum distributions allow

for a level of generality in the vicinity of equilibrium. Because of folding in energy density,

greater details than in a Gaussian may, in fact, have limited impact on the results. The

anisotropy enters f through a parameter ε. For simplicity, in order to keep the volume in

p-space occupied by the Gaussian constant, we scale the beam axis p‖ and the perpendicular

axis p⊥ elliptically. Since a deformation of the phase-space density along the beam axis is a

common scenario in heavy-ion collisions, ε is chosen such that a positive value is associated

with a broadening in p‖:

fε(r,p) =
ρ(r)

(2πσ2)3/2
exp



− 1

2σ2



p2⊥(1 + ε) +
p2‖

(1 + ε)2







 . (2.15)

In order to make the optical potential linear in anisotropy for small ε, we expand the Gaussian

phase-space density (2.15) about ε = 0 up to first order

fε(r,p) ≈ f0(r, p)

[

1 + ε

√

16π

5

p2

2σ2
Y20(ϑ)

]

, (2.16)
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and use this expansion in (2.11). We arrive at an ε-dependent expression for the mean

field U(ρ(r),p) which only contains two one-dimensional, p-independent integrals. The

implications of this reduction of computational cost for BUU simulations are outlined in

chapter 4. Upon inserting f of (2.16) into (2.11), we get

Usepint(ρ(r),p) = A

(

ρ(r)

ρ0

)

+ B

(

ρ(r)

ρ0

)σ

+ C
ρ(r)

ρ0

[

2

1 +
[ p
bΛ

]2

1

σ2

∫ ∞

0
d p′

2√
2πσ2

p′2 exp[− p′2
2σ2

]

1 +
[

p′
bΛ

]2

+ ε

√

16π

5

2

15σ4
c(p)p2Y20(ϑ)

∫ ∞

0
d p′

2√
2πσ2

p′6c(p′) exp
[

− p′2

2σ2

]

]

.

(2.17)

In the following chapter, we show how to construct Vsepint and Usepint consistent with Welke’s

mean field. Therefore, one needs to find optimal values for the parameter b in (2.8) and (2.11)

as well as an appropriate function c(p).
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Chapter 3

Modeling

3.1 Ground state in energy density and mean field

Within our considerations, our model mean field has right now two adjustable quantities:

the parameter b and the function c(p). Since it is essential to reproduce reasonably the

features of the (isotropic) ground state of nuclear matter in our framework, and as done

before by Welke, before proceeding with excited medium, we start the process of modeling

by considering Vsepint and Usepint for a single Fermi sphere in this section.

−80

−60

−40

−20

0

20

40

0 500 1000 1500 2000

U
(p
)
[M

eV
]

p [MeV]

ρ = ρ0

UWelke Fermi sphere

Usepint Fermi sphere

Figure 3.1: Optical potential U of the ground state as function of momentum p for Welke et
al. and for the separable approach, at normal density.
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The remarkable agreement between the two approaches and seen in fig. 3.1 and fig. 3.2 is

found for b = 1.16. The energy density Vsepint proves to be more sensitive to variations in b in

terms of increasing deviations between Welke and the separable model than the mean field.

Presumably, this is due to the quadratic shape of the isotropic term in (2.8). The separable

mean field agrees with Welke fairly well in the range 1.1 ≤ b ≤ 1.2, also for higher densities

than ρ0. In fig. 3.2, one can see that the deviations between Welke and our model become

larger for high densities but are still reasonable up to 4ρ0, given that the phenomenological

approach by Welke et al. is a useful common-sense consideration, but not the truth.
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Figure 3.2: Energy density V at zero temperature as function of density ρ for Welke et al.

and the separable approach.

As for zero temperature, Welke’s convolutional model seems to be replacable by a separable

ansatz. We now look at the behavior of our model in excited scenarios characterized by a

schematic Gaussian phase-space density.
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3.2 Energy density and mean field for excited nuclear

matter

When considering excited states in momentum space, i.e. projectile and target start over-

lapping, the phase-space density f can be schematically represented by a Gaussian. This

Gaussian distribution exhibits various degrees of anisotropy. Ultimately, we are interested

in modeling strongly anisotropic scenarios within our separable framework. Such a situation

occurs in the 2-Fermi-sphere system introduced in § 2.1.1. In order to arrive at this point,

we firstly apply the parameterization which we found for cold nuclear matter to an isotropic

Gaussian distribution (cf. § 3.2.1), and secondly constrain the anisotropic part of our mean

field with anisotropic Gaussians (cf. § 3.2.2).

3.2.1 Isotropic Gaussian phase-space density

In order to establish a connection between a spherical distribution and an isotropic Gaussian

density, we consider the density of kinetic energy

〈

p2

2m

〉

=

∫

d3p′
p′2

2m
f(r,p′). (3.1)

For a Fermi sphere, we find it to be

〈

p2

2m

〉

=
3

5

p2F
2m

ρ. (3.2)

An isotropic Gaussian yields
〈

p2

2m

〉

= 3
σ2

2m
ρ. (3.3)
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Thus, we expect the Gaussian distribution to mimic cold nuclear matter if

σ =
pF√
5
=

p
(0)
F

3
√

ρ/ρ0√
5

. (3.4)

In the Boltzmann model, σ and T are connected via

σ2 = mNT, (3.5)

where mN is the nucleon mass. Temperatures between 15MeV ≤ T ≤ 170MeV are of

interest in heavy-ion collisions. With (3.4) and (3.5) we have a recipe how to appropriately

use the Gaussian distribution in our separable model. At first, we consider the optical

potential for a Gaussian at normal density.
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Figure 3.3: Optical potential U of an isotropic Gaussian as function of momentum p for
Welke et al. and for the separable approach, at normal density. Results for different widths
σ are visualized for the range dictated by achievable temperatures in the collisions.
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We find a good agreement for σ = 120MeV which satisfies (3.4). For higher σ, i.e. higher

temperatures up to 170 MeV (equivalent σ = 400MeV), Welke’s array of curves saturates

for lower momenta than the separable one. This issue can be resolved by adding another

separable isotropic term of the same kind that is already included in (2.11) to the mean field.

For illustration, we added such a term, using b = 1.1 in the first term (weighted with 1.8),

and b = 4.0 in the new second term (weighted with 0.1) to deal with high values of σ.
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Figure 3.4: Same as in fig. 3.3 but with two separable isotropic terms in the mean field
parameterization.

There is a marginal difference between fig. 3.3 and fig. 3.4, namely reduced deviations for

high momenta in fig. 3.4 at the cost of an excellent agreement for the width mimicing cold

nuclear matter. We simply intended to demonstrate that our separable approach can be

enhanced when more terms are added. For higher densities ρ, the results do not significantly

change.

In equilibrated Gaussian scenarios, the density to consider is ρ = 2ρ0 accounting for the
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matter from the two original nuclei overlapping. Thus, we will keep the density fixed at this

value throughout the rest of this section. Apart from the optical potential U we are also

interested in the energy density V for a Gaussian distribution. We consider V as a function

of σ/Λ for 2ρ0 (cf. fig. 3.5), i.e. the starting width, mimicing the ground state, amounts

to 150 MeV. The agreement is reasonable. For high temperatures, a deviation emerges that

again can presumably be reduced when adding more terms to the separable expansion.
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Figure 3.5: Energy density V as function of σ/Λ for an isotropic Gaussian at 2ρ0 for Welke
et al. and for the separable model.

After showing that the Gaussian distribution works fine with b = 1.16 from cold nuclear

matter we consider an anisotropic Gaussian scenario.

3.2.2 Anisotropic Gaussian phase-space density

In the framework of our model, the anisotropy of the phase-space density is described by

the parameter ε which scales the width of the Gaussian distribution differently for the beam
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axis and the perpendicular axes. One needs to relate this parameter to other, e.g. such as

temperature, in order to determine the range in ε one should consider. We go back to eq.

(3.1) to advance in our considerations. For an anisotropic Gaussian (2.15), one obtains

〈

p2

2m

〉

= 3
σ2

2m

[

2

(1 + ε)
+ (1 + ε)2

]

ρ. (3.6)

We require that the quantity

σε := σ

√

2

(1 + ε)
+ (1 + ε)2 (3.7)

does not exceed the temperature bound of 170 MeV. The extremum is reached for ε = −0.7

and ε = 1.5. Other common sense considerations can be carried out that yield comparable

values.

The function c(p) is adjusted in the anisotropic part of the mean field U , rather than in

the tensorial part of the potential energy density V . The reason is that by construction,

given that the typical directionalities in collision scenarios along the beam axis and the

perpendicular axes hold for our anisotropic Gaussian, the tensorial part

∑

α,β

Tαβ(r)Tαβ(r) =
3

2
(T zz(r))2 ∝ ε2 (3.8)

is always of the same positive sign. This is true in general, given that Tαβ is symmetric and

may be diagonalized. Thus, one would assume V (ε) to have a negative curvature, when the

tensorial part is appropriately multiplied with the negative parameter C (2.8). As we show

in fig. 3.6, this is clearly not the case. However, within the framework of our model, we are

capable of reproducing Welke’s potential energy density V as function of anisotropy ε for an
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anisotropic Gaussian, when only taking the Skyrme parameterization for the ρ(r)-dependent

part of V and the part scalar in momentum into account:

Vsepint(ρ(r)) =
A

2

ρ2(r)

ρ0
+

B

σ + 1

ρσ+1(r)

ρσ0

+
C

ρ0

∫

d3p′
fε(r,p

′)

1 +
[

p′
bΛ

]2

∫

d3p′
fε(r,p

′)

1 +
[

p′
bΛ

]2
. (3.9)

Note the index ε of f in (3.9), indicating that we use the full anisotropic Gaussian as given

in (2.15), and not the first-order expansion about small ε (2.16). In fig. 3.6, the energy

density (3.9) is compared to Welke as function of anisotropy, for ρ = 2ρ0.
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Figure 3.6: Energy density V (3.9) as function of ε for an anisotropic Gaussian compared
with Welke et al., at 2ρ0.

The good agreement indicates that the first part of our separable expansion (2.8), scalar in

momentum, reasonably describes Welke in isotropic (cf. § 3.2.1) and anisotropic scenarios.

Since V (ε) does not qualify for restricting c(p), we now turn to the anisotropic mean field
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U . In the following adjustment of c(p) through the mean field, we keep using a Gaussian

phase-space density with a standard deviation of σ = 150MeV (cold matter equivalent for

2ρ0). The shape of U according to (2.17) is a simple parabola of the form

c1(3x
2 − 1) + c2 (3.10)

with x = cos(ϑ) as its argument as well as the curvature 3c1 and the vertex c2 − c1. Its

vertex is parameterized by b, ε and c(p) whereas its curvature depends on ε and also c(p).

We make the following ansatz for the function c(p):

c(p) =
1

p2 + (aΛ)2
. (3.11)

Although we are mostly interested in modeling strong anisotropies, we try to adjust the

parameter a such that we have a good agreement for small, medium and big ε. Therefore,

we consider the mean field U as function of cos(ϑ) (cf. fig. 3.7) at a reasonably high

momentum p = 2p
(0)
F for anisotropies of ε = 0.5 (medium) and ε = 1.5 (strong).

We find the best agreement for b = 1.15 – which we insignificantly changed from the original

b = 1.16 – and a = 1.15. In addition, we apply these parameters to the anisotropic mean

field for small ε = 0.3 (cf. fig. 3.8) and for ε = 1.0 (cf. fig. 3.9) right between 0.5 and 1.5.

For ε = 0.3, the deviations between Welke and the separable approach are negligible, but

the anisotropic behavior is also insignificant. Regarding ε = 1.0, we find a good agreement

for the case of strong anisotropy (p = 2p
(0)
F ) and some deviation for p = p

(0)
F .

Now we have acquired the tools to look at the 2-Fermi-sphere system described by Welke et

al. with our separable model. This comparison is made in the next section.

22



−10

0

10

20

30

40

−1 −0.5 0 0.5 1

U
(c
os
(ϑ
)
[M

eV
]

cos(ϑ)

p = 2p
(0)
F

σ = 150MeV

ε = 1.5

ε = 0.5

UWelke Gaussian

Usepint Gaussian

Figure 3.7: Anisotropic mean field U (2.17) as function of cos(ϑ) for ε = 0.5 and ε = 1.5

at a momentum magnitude of p = 2p
(0)
F . The parameterization according to Welke et al. is

compared to our separable one using b = 1.15 and a = 1.15.
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3.3 Comparison of anisotropy for 2 Fermi spheres

In § 2.1.1, we introduced a system consisting of 2 Fermi spheres separated by p0 = 800MeV

in momentum space (cf. fig. 2.1). Such a scenario is an ideal candidate to validate the

separable anisotropic mean field we just derived since the anisotropy involved is remarkable,

e.g. for a momentum of p
(0)
F . In some contrast to what Welke et al. did, we consider a

particle in the center of mass in p-space and define the angle ϑ with respect to the positive

p‖-axis.
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Figure 3.10: Anisotropic mean field U (2.17) in the center of mass of 2 Fermi spheres

separated by p0 = 800MeV as function of cos(ϑ) at a momentum magnitude of p = p
(0)
F .

The optimal agreement in fig. 3.10 was obtained by tweaking the parameters of our model

to b = 1.19 and a = 1.10. This change leads to some defocussing for the potential energy

density in cold nuclear matter and influences the behavior of the anisotropic mean field

for the Gaussians. However, the adjustments one needs to make to obtain a reasonable
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concordance between Welke and the separable model in fig. 3.10 are satisfyingly small.

3.4 Contribution to the velocity field due to an aniso-

tropic mean field

Before outlining the advantages of our separable model for BUU calculations, compared to

Welke, we would like to present an exceptional finding associated with our model. From the

mean field U , one can calculate its contribution ∆v to the velocity field v via

∆v = ∇pU(p). (3.12)

Out of curiosity we did this for ε = 0.0 and ε = 1.5, using a Gaussian phase-space distribution

with σ = 150MeV at ρ = 2ρ0. The result of the derivative (3.12) is not given here explicitly.

We look at the problem for py = 0. The velocity vectors in the following plots are depicted

by arrows, scaled in magnitude by a factor of 200. The underlying Gaussian distribution is

indicated by contour lines.

In the isotropic case (cf. fig. 3.11), particle velocities ∆v point radially away from the center

of mass and follow straight field lines. Suprisingly, for ε = 1.5 (cf. fig. 3.12), field lines are

curved and particles try to escape perpendicular to the beam axis. However, compared to

the full velocity field

v =
p

m
+∇pU(p), (3.13)

this effect is weak for anisotropies ε in the range of interest. Given that the distribution of

particles in momentum is anisotropic the findings in fig. 3.12 indicate that the distribution
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in velocity is more isotropic. As a consequence of this behavior, we expect a strengthening

of the elliptic flow at an early stage of the collision.
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Figure 3.11: Contribution to the velocity field ∆v associated with our mean field (2.17) for
an isotropic Gaussian (ε = 0) in 2 dimensions.
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Figure 3.12: Contribution to the velocity field ∆v associated with our mean field (2.17) for
an anisotropic Gaussian (ε = 1.5) in 2 dimensions.
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Chapter 4

Proposed organization of BUU trans-

port simulations

Beyond the scope of this thesis is the actual application of the anisotropic mean field, which

we derived in the previous chapters, to reaction simulations, namely BUU calculations.

However, in order to stress the relevance of our work, we will provide a brief prescription

how to use the model in reactions and name the benefits one gains from using it.

The foundation of BUU is the Boltzmann transport equation [Ber84],[Dan00] for the single-

particle distribution function f(p, r, t). In order to determine the state of the system one

needs to solve the Boltzmann equation for f in every time step t:

∂f

∂t
+

∂ǫ

∂p

∂f

∂r
− ∂ǫ

∂r

∂f

∂p
= Icoll(f). (4.1)

The collision integral on the r.h.s. of (4.1) accounts for the time evolution of the single-

particle phase-space density f evoked by two-body collisions. The mean field U enters the

Boltzmann equation on the l.h.s. which takes the motion of particles in the field into account.

In order to find the single-particle energies ǫ one has to take the functional derivative of the
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system’s net energy E with respect to the phase-space density f :

ǫ =
δE

δf

=
p2

2m
+

δV

δf

=
p2

2m
+ U. (4.2)

If the p-dependent part of the mean field is parameterized in terms of an integral

U(r,p) ∝
∫

d3p′
f(r,p′)

1 +
[

p−p′
Λ

]2
, (4.3)

as in the model by Welke et al., one has to determine a different 3-dimensional integral

for every momentum p and position r. The latter is either computationally costly or gives

rise to large errors for a low number of Monte Carlo sample points in phase space. In the

framework of our model (2.14) one would have to evaluate the integrals in the isotropic term

and in T zz per spatial location, once per time step. This is a significant advantage of our

model over the parameterization by Welke et al..

Since the primary anisotropy occuring during much of the reaction is a broadened f in beam

direction, our model – where a reduction to T zz is intrinsically built-in – naturally qualifies

for describing such systems in a cost-effective way.

30



Chapter 5

Conclusion

In this thesis, we developed a nucleonic mean field U which explicitly exhibits an anisotropic

behavior for anisotropic phase-space densities f , and that can significantly reduce compu-

tational effort and error-proneness in transport simulations. On that account, we made the

nuclear energy functional separable in momentum space in terms of an expansion in spher-

ical harmonics. As reference and guideline during the process of setting up our model, the

parameterizations of V and U by Welke et al. [Wel88] were used. We step by step evolved

the elements of our model by breaking up the original – and in comparison to our parameter-

ization very costly – convolution in the potential energy density, substituting it with scalar

and tensorial terms, both symmetric in the single-particle properties, and taking the func-

tional derivative of V with respect to f to obtain U in a simple form. Our model comprises

two parameters, one of them – b – mainly relevant in isotropic scenarios, the other one –

a – important for characterizing the anisotropy of the mean field. We started the process

of modeling by looking at cold nuclear matter properties, also regarding Welke’s V and U ,

and trying to mimic their behavior within our separable framework. Since we obtained a

good practical agreement between the models, we proceeded by considering (isotropic) ex-

cited matter described by a Gaussian phase-space density. After mapping the Gaussian onto

the isotropic ground state by appropriately adjusting its width σ and finding insignificant

deviations for the mean field as function of momentum p, we increased the temperature T of

the system up to 170 MeV observing growing discrepancies between the models. However,
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we showed that by adding another isotropic term to our parameterization of U one can suc-

cessfully reduce the deviations for high T . We also looked at the potential energy density

V for an excited Gaussian state as function of temperature and found a good agreement for

the parameter value inferred from cold nuclear matter. In order to constrain the anisotropy

immanent in our mean field U , we made the Gaussian distribution anisotropic by introduc-

ing the quantity ε and aimed at concordance between Welke and our separable approach

when plotting U as a parabolic function of cos(ϑ). We found a good agreement between the

models especially for strong anisotropies when adjusting a accordingly. Additionally, when

considering the energy density V of an anisotropic Gaussian as function of ε, we found that

the ε2-dependence of the tensorial term is insufficient to approximate Welke due to the sign

of the ε-parabola’s curvature. However, we could describe Welke by using an ǫ-dependent

scalar part and the regular Skyrme parameterization for the ρ-dependent part. Presumably,

this is related to V being a more integral quantity and U a more differential one. To test

our model with a scenario that has been dealt with in the literature we found the 2-Fermi-

sphere situation described in [Wel88] appealing since its mean field is highly anisotropic. By

portraying the mean field of 2 Fermi spheres approaching each other in momentum space

with our anisotropic model we could show that our ansatz is generally applicable even if the

shape of the system is not Gaussian. When looking at the contribution ∆v to the velocity

field v associated with our mean field parameterization for an isotropic and an anisotropic

Gaussian distribution function, we found that particle velocities for a strongly anisotropic

scenario of ε = 1.5 tend to be weakly oriented along the perpendicular axis. Consequently,

one would expect a strengthening in the experimental observable of elliptic flow. Finally, we

discussed the computational benefit of using our model in BUU transport calculations. For

these simulations, integrals are commonly evaluated through Monte Carlo. The cost of many
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integrals is usually reduced by fewer Monte Carlo sampling points in phase space leading to

larger errors. In the framework of our separable model, significantly less integrals need to be

evaluated than e.g. in the ansatz by Welke et al., allowing for more accurate Monte Carlo

sampling and for accelerated computation. However, we have not yet proceeded to an actual

implementation due to the limited scope of this thesis.

To conclude, we presented a simple, user-friendly way of describing the potential energy

density V and the mean field U , associated with momentum p, in heavy-ion collisions. Our

model is especially powerful in terms of dealing with strongly anisotropic scenarios and with

respect to its applicability in transport simulations.
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